12 000 kN·m高能级强夯处理湿陷性黄土试验研究^{*}

詹金林 水伟厚 何立军 成小程

(上海现代建筑设计集团申元岩土工程有限公司,上海 200040)

摘 要:对 12 000 kN·m 能级强夯处理湿陷性黄土地基的设计、施工、检测进行系统全面的研究,通过标 准贯入试验、室内土工试验、静力触探试验、瑞雷波试验、浸水与不浸水平板载荷试验对强夯处理效果进行综 合检测,与同一场地 3 000 & 000 kN·m 能级的处理效果进行对比,得出有效加固深度、湿陷性处理效果等结 论,为大面设计、施工、检测提供参考。

关键词:湿陷性黄土; 地基处理; 12 000 kN·m 强夯; 检测

12 000 kN·m ENERGY DYNAMIC COMPACTION EXPERIMENT FOR COLLAPSIBLE LOESS

Zhan Jinlin Shui Weihou He Lijun Cheng Xiaocheng

(Xiandai Architectural Design Group, Shenyuan Geotechnical Co. Ltd, Shanghai 200040, China)

Abstract : A experiment of 12 000 kN·m energy dynamic compaction for collapsible loess was carried out. Through comprehensive analyzing the data of standard penetration test, soil mechanics experiment, cone penetration test, Rayleigh test, static test, and compare with other energy dynamic compaction results of collapsible loess, some results of effective reinforced depth and coefficient of collapsibility were obtained. References for design ,construction, and detection of collapsible loess were provided.

Keywords : collapsible loess; foundation treatment; 12 000 kN·m dynamic compaction; detection

强夯法是加固湿陷性黄土的一种经济高效、节 能环保的处理方法,在国内数百项工程中得到广泛 的应用,并取得良好效果^[1-4]。随着西部大开发的 深入,大量基础设施的建设对湿陷性黄土地基处理 的要求也越来越高。JGJ 79-2002《建筑地基处理 技术规范》^[5] 中强夯处理的最高能级为 8 000 kN·m, GB 50025-2004《湿陷性黄土地区建 筑规范》^[6]中为8 500 kN·m,对黄土地区需处理的 湿陷性深度超过 10 m 的工程过去均采用分层强夯 或挤密灰土桩处理,造价高,工期长。近年来,国内 强夯在碎石土地基上的最高能级已经达到 18 000 kN•m^[7],单层强夯的有效加固深度达到了18~20 m。在黄土地区采用更高能级的强夯,其加固效果 如何,工艺参数与碎石土地区有何差别是岩土工程 界关心的课题。结合湿陷性黄土地区国家某重点工 程,通过多种原位和土工试验,对 12 000 kN·m 能级 强夯在该场地的加固效果及相关参数进行研究,得 到了一些探索性的规律和结论。

1 350.0 m左右,地下水埋深一般为 29.5~33.5 m。

2 试验设计

试验区分12 000,8 000,3 000 kN·m三块区域 进行试夯,其中12 000 kN·m 试验区为50 m×50 m, 五遍成夯工艺,第一、二遍能级为12 000 kN·m点夯, 呈正方形布置,夯点间距10 m,间隔跳打,第二遍夯 点位于第一遍4 个夯点之间;第三遍为8 000 kN·m

试验场地位于甘肃某黄土塬,地形平坦开阔,黄 土最大覆盖厚度达200~300 m。场地地面标高为

收稿日期:2009-11-15

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

钻孔最大揭示深度 40 m,揭示地层 13 层,第①层为 Q₄ 粉质黏土(黑垆土);第②—第④层为 Q₃ 粉质黏 土(马兰黄土);第⑤—第⑬层为 Q₂ 粉质黏土(离石 黄土上段)。勘探场区,湿陷性黄土的湿陷程度由 上向下逐渐减弱,渐变为非湿陷性黄土。湿陷性黄 土的底界埋深为 16 m 左右,包含的地层为②—⑤粉 质黏土,即场地内湿陷性黄土为 Q₃ 的马兰黄土和 Q₂ 顶部的离石黄土。本场地黄土的湿陷等级为 II 级,湿陷类型为自重湿陷性黄土。

¹ 场地工程地质条件

^{*} 上海现代建筑设计集团基金资助项目:高能级强夯与预处理动力 固结法研究(2004-结-地-03)。

第一作者:詹金林,1977年出生,硕士,工程师。

能级的加固芬,夯点位于第一、二遍夯点和第一、二 遍夯点中间;四、五遍为3000 kN·m能级满夯,每遍 每夯点夯击1击,夯印搭接1/4。

3 000 kN•m 试验区为四遍成夯工艺,第一、二遍为 点夯,夯击能为3 000 kN•m,夯点间距为5 m,呈正方形 布置,夯击次数不少于8 击。第三、四遍采用 1 000 kN•m夯击能满夯,每点1击,夯印搭接1/3。

8 000 kN·m 试验区为五遍成夯工艺,第一、二 遍为点夯,夯击能为8 000 kN·m,夯点间距为7 m, 呈正方形布置,第二遍夯点位于第一遍4 个夯点之 间,夯击次数不少于8 击。第三遍为点夯,夯击能为 3 000 kN·m,点夯间距为7 m,呈正方形布置,一般 不少于6 击。第四、五遍采用1 500 kN·m 夯击能满 夯,每点1 击,夯印搭接1/3。

3 现场施工参数

12 000 kN・m 试验区锤重为450 kN,落距为 26.7 m。第一遍夯8~10击,第二遍夯6~8击,最 后两击平均夯沉量不大于200 mm,能级12 000 kN・ m;第三遍加固夯能级8 000 kN・m,夯击数4击。第 一、二遍强夯夯坑平均夯沉量分别为4.2,3.2 m,整 平后场地平均沉降量分别为0.3,0.29 m,第三遍强 夯夯坑平均夯沉量为1.7 m,整平后场地平均沉降 量为0.23 m。第四、五遍夯击能级3 000 kN・m 满夯 的平均夯沉量为0.33,0.13 m;试验场地总体平均沉 降量为1.28 m。

3 000 & 000 kN·m 试验区强夯后总体平均沉降 量分别为0.5 0.9 m。为对比三种夯击能的夯击效

果 ,图 1 绘出了3 000 & 000 ,12 000 kN·m 第一遍强 夯施工的夯坑累积夯沉量对比曲线。

4 现场测试结果

为评价高能级强夯加固效果,判断有效加固深 度,本试验区采用多种检测手段综合测试,检测的内 容及工作量见表1。

表1 检测项目与工作量

Table 1 Amount of work for detection

检测内容	单位	数量	备注
瑞雷波测试	点	6	夯前、夯后各3点
钻探取样	孔	4	夯前1孔、夯后3孔,孔深20m;取
(标贯)			样每米取一个,共80个样;标贯夯
			前 20 次 ,夯后 60 次 ,共 80 次
探井	个	1	井深 20 m ,取样每米一个 ,共 20 个
静力触探	点	4	夯前 1 孔、夯后 3 孔 ,孔深 20 m
平板静载试验	点	3	要求承载力标准值不小于 250
			kPa,压缩模量不小于 20 MPa,1 个
			浸水 2 个不浸水

4.1 标准贯入试验结果

为使试验结果具有可比性,在夯前、夯后分别进 行了标准贯入试验,夯前1孔、夯后3孔,夯前、夯后 各地层标贯击数 – 深度曲线如图2所示。通过图2 可以看出:12 m以内的标贯击数增长较大,12~18 m的标贯击数存在不同程度的提高,但波动较大,因 此根据标贯试验判断有效加固深度为12 m。

本试验区夯前1孔, 夯后4孔(一个探井), 取

原状土样 100 件,主要用来分析土的湿陷系数,图 3 为强夯加固前、后的湿陷系数对比曲线,由图 3 可以 看出:处理后 12 m 以内湿陷性全部消除。对于以消 除黄土湿陷性为目的地基处理,应以湿陷系数为评 价指标,因此判定 12 000 kN·m 试验区强夯有效加 固深度为12 m。室内部分土工试验参数统计如表 2 所示,根据室内土工试验的干密度、孔隙比、压缩模 量综合判定有效加固深度为 12 m。

表 2 土工参数对比 Table 2 The comparison of soil parameters

深度/m	干密度/(g•cm ⁻³)		孔隙比		压缩模量/MPa	
	夯前	夯后	夯前	夯后	夯前	夯后
0 ~ 2	1.350	1.721	1.076	0.576	10.93	17.75
$4 \sim 4$	1.415	1.599	0.920	0.700	7.61	12.63
$4 \sim 6$	1.365	1.470	0.992	0.848	11.08	12.17
6~8	1.380	1.420	0.968	0.914	12.80	12.98
$8 \sim 10$	1.485	1.475	0.826	0.841	9.61	9.23
$10 \sim 12$	1.415	1.409	0.917	0.922	10.71	13.17
$12 \sim 14$	1.460	1.433	0.859	0.894	16.05	13.01
$14 \sim 16$	1.480	1.513	0.831	0.795	17.50	11.43
$16 \sim 18$	1.475	. 495	0.836	0.816	15.02	17.52
18 ~ 20	1.425	1.473	0.904	0.843	20.50	16.14

Fig. 3 The comparison of coefficient of collapsibility before and after 12 000 $kN{\, \bullet }m$ dynamic compaction

4.3 静力触探试验结果

静力触探试验,采用静力触探车型号为 TNKC5090TC,探头为JMS – 15 型双桥探头,JTWJ – 2 型静力触探微处理仪,每 5 cm 采集一个 $q_c f_s$ 值。 本试验根据静探 $q_c f_s$ 综合判定地基土有效加固深 度。

根据静力触探结果,绘制静探 q_{e} , f_{s} -深度曲线,如图4所示。从图4可以看出,14m深度范围内的静探 q_{e} , f_{s} 值提高比较明显,14m以下地基土

静力触探值波动变化较大,较原静探 $q_{e} f_{s}$ 值变化不 明显。因而根据静力触探 $q_{e} f_{s}$ 值综合判定试验区 有效加固深度为 14 m。表 3 为各地层双桥静力触 探实测结果的 $q_{e} f_{s}$ 统计值,可以看出,经过处理后 有效加固深度内各地层 $q_{e} f_{s}$ 均提高 30% 以上。

表 3 静力触探参数统计对比

Table 3 The comparison of CPT parameter

地层	夯前 q _c /	夯后 q_{c} /	q _c 提高	夯 前 <i>f</i> _s /	夯后 $f_{\rm s}$ /	f _s 提高
序号	MPa	MPa	率/%	kPa	kPa	率/%
2	1.20	4.70	292	35	129	269
3	3.28	5.38	64	161	247	53
4	1.88	2.43	29	94	129	37
(5)	4.43	5.54	25	222	294	32

Fig. 4 The comparison of CPT curve before and after 12 000 kN·m dynamic compaction

4.4 瑞雷波测试结果

瑞雷波是一种质点在波的传播方向竖向平面内 振动,且质点的振动轨迹为逆时针方向转动的椭圆 的地震波,振幅随深度呈指数函数急剧衰减,传播速 度略小于横波。利用瑞雷波进行加固深度评价是基 于面波具有以下的特性:1)在分层介质中,面波具 有频散特性;2)面波的波长不同,穿透深度也不同; 3)面波传播速度与横波传播速度具有相关性。通 过夯前、夯后单点瑞雷波测试,对比前、后频散曲线 变化,判定强夯有效加固深度。

本试验测试采用 SRS24 型多功能工程地震仪, 采集参数如下:道数:24 道;道距:1 m;偏移距:15 m;采样点数:1 024;采样率:1 ms;检波器:4.5 Hz; 震源:采用 108.6 N(约 24 磅)大锤人工锤击地面。

通过测试绘制夯前、夯后瑞雷波频散曲线如图 5 所示。从频散曲线形态看,12 000 kN•m 试夯区 6.0 m 以内之字形拐折较多,说明在横向和竖向均 具有不匀性。夯后波速分层明显,故可通过频散曲 线拐点判定强夯有效加固深度为9~13 m。

4.5 平板荷载试验测试结果

本次夯后共进行 3 组平板载荷试验,试点编号 分别为 1 号(位于夯间,浸水载荷试验)平板载荷试 验,按照 GB 50025—2004《湿陷性黄土地区建筑规 范》进行 2 号、3 号(位于夯点,不浸水载荷试验)。 由于强夯处理后地基土渗透系数显著减小,因此在 浸水静载试验点四周打设 8 个深 2 m、直径130 mm 的浸水孔,内填小粒径卵石,加速浸水。载荷板面积 为 1.0 m×1.0 m。平板载荷试验 Q - s 曲线如图 6 所示。浸水载荷试验先不浸水加载至 250 kPa,下沉 稳定后,再向载荷板四周沟槽及浸水孔连续浸水 10 d,坑内水头不小于 200 mm,附加下沉稳定后继 续浸水,并加载至 500 kN,浸水后载荷板下沉 2.37 mm,下沉量很小。

静载试验各点的承载力特征值汇总见表 3。

表 3 静载试验成果汇总 Table 3 The results of static test

试验 点号	最大加载量/ kN	′最终沉降量 / mm	地基承载力特征值/ kPa	备注
1号	500	11.22	≥250	浸水
2号	500	1.98	≥250	不浸水
3号	500	1.62	≥250	不浸水

4.6 有效加固深度的判定

强夯的有效加固深度从起夯面算起,有效加固 深度的判定以处理后满足设计所需的深度为标

准^[8]。对于以处理湿陷性黄土为主的强夯地基处 理应以所消除湿陷性土层厚度为主进行判定。本场 地试夯区采用了土工试验、标贯、静力触探、多道瞬 态面波测试和载荷试验等五种手段,按消除湿陷性、 地基承载力、压缩模量和有效加固深度四个标准综 合评价强夯的有效深度为 12 m。

5 结 语

 1)本湿陷等级为Ⅱ级的自重湿陷性黄土地基
 经过12 000 kN•m能级强夯处理后,承载力特征值不 小于 250 kPa,压缩模量不小于 20 MPa。

2)根据各项试验结果综合判断,12 000 kN·m
强夯有效加固深度为12 m,累计夯沉量在4.0~
4.5 m,消除黄土湿陷性深度和效果明显。

3)强夯后黄土地基的检测建议采用钻孔、探井 取土试验判断湿陷性,静力触探试验判断加固深度, 静载试验判断承载力。

参考文献

- [1] 王铁宏. 新编全国重大工程项目地基处理工程实录[G]. 北京:中国建筑工业出版社 2005.
- [2] 水伟厚.冲击应力与10 000 kN·m高能级强夯系列试验研究
 [D].上海:同济大学 2004.
- [3] 王铁宏,水伟厚,王亚凌,等. 10 000 kN·m高能级强夯地面变 形与孔压试验研究[J]. 岩土工程学报 2005,27(7):759-762.
- [4] 王铁宏,水伟厚.高填方碎石土地基16 000 kN•m能级强夯试 验研究[C]//第十届土力学及岩土工程学术会议论文集:下 册.北京:中国建筑工业出版社 2007:43-48.
- [5] JGJ 79-2002 建筑地基处理技术规范[S].
- [6] GB 50025-2004 湿陷性黄土地区建筑规范[S].
- [7] 詹金林,水伟厚,何立军. 18 000 kN·m能级强夯处理深厚填海 碎石试验研究[J]. 工业建筑 2010 40(4):96-99.
- [8] 王铁宏,水伟厚,王亚凌,等.强夯法有效加固深度的确定方法 与判定标准[J].工程建设标准化 2005(3):27-38.

96

?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

工业建筑 2010 年第 40 卷第 6 期 http://www.enki.net